

Mission Critical Communication

Load Balancing & Power Quality Business Case

Bo Nilsson, Business Development Director

Utility example: Digitalization is a key enabler of achieving decarbonization and decentralization goals

Decarbonization 50 35 **-**0 -50 -100 -150 -200 -250 Change in carbon content of electricity (g/kWh) 2008-2017 -150 -100 -50 0 50 150

Achieving decarbonization goals requires additional investments in:

- Utility-scale renewables (wind, solar)
- Transmission and energy storage capacity
- Electrification of transportation and buildings

Decentralization

Continued decentralization will require:

- Tighter integration of transmission, distribution and the DERs (rooftop PV, EVs)
- Digital assets at the grid edge
- Development of transactive energy markets

Digitalization

Digitalization enables decarbonization and decentralization by:

- Utilizing data and analytics to enable the operation of transmission grids with high penetrations of renewable energy
- Enabling higher hosting capacity for DERs on distribution networks while supporting the development of transactive energy markets

Hitachi Energy

Electric Grids are in a Massive Transition

HITACHI Inspire the Next

- Centralized Highly Predictable / Controllable generation
- Forecasted generation on a second-by-second basis
- Forecasted load with 98%+ accuracy

- Decentralized / Variable generation
- Sudden new appearance of generation
- Sudden decrease in load
- Mobile load increases demand uncertainty

- Energy Flow ----- Information Flow ----- Blockchain

Electricity generation, transmission, and distribution

Source: Adapted from National Energy Education Development Project (public domain)

Why Wireless Communication?

- The electric distribution grid increasing in complexity at an accelerating rate
 - New energy assets are added to the grid by actors inside and outside of the utility
 - Roof top solar
 - Electric vehicles
 - Demand (Load) is now mobile
 - "Houses and apartments" driving around the city
 - Grid load balancing is more complex and expensive
- The individual consumer impacts grid operations more than at any time in the past
- Increasing complexity has impacted operational and performance demands on distribution utilities
- The only path forward for the distribution grid is to exponentially increase the operators' visibility
- Communication technology provides critical visibility
 - Wireless communication technology is the most cost-effective enabling technology of the intelligent grid

HITACHI

Inspire the Next

"The use of wireless networks in grid edge applications is significantly less developed than wired." - Cambridge Consultants

Internal © 2021 Hitachi Energy. All rights reserved.

Why Wireless Communication?

• Wireless is ideal to provide the following use cases at a significantly lower total cost of ownership

LTE

- AMI backhaul
- Transmission / Distribution SCADA
- Line Devices
- Lines Switches
- Volt/VAR management
- Environmental Monitoring

Narrowband IoT

- C&I Metering
- Lighting Control
- Pole Sensors (Tilt & Sag)
- Transformer Monitoring
- Environmental Monitoring

Private LTE

- Router SCADA controller
- Infrared Video
 - Monitor Transformer heat
- Intruder Detection
- Transformer Hydrogen Monitoring
- RTU monitoring
- Physical Access Control

The Challanges

Every DNO and DSO is looking for a way forward ...

Challenged that DNO / DOS will need to address

- Power generation injection at the DNO / DSO level will increase
- Implement logic in the grid edge that turn uncontrolled black outs into controllable brownouts
- implement logic that can handle the off grid / on grid scenarios like EV Charger island in remote locations
- Need for implementation of massive IIoT both digital twins and real time digital twin's sensors. The DNO / DOS need better / full visibility to the grid applications and related services. Start with a grid application profiling.
- Wireless Coverage and Reach in the UK Public & Private Wireless Service (410 MHz band 87 PoC in UK)
- How to build a "hybrid" wireless infrastructure
- The impact of 5G in the utility DSO / DNO market
- New Cybersecurity Regulation (NIS-2) are we ready

The Environment We Serve !

Comms equipment for Grid & Heavy Industry is not always friendly...

Internal © 2021 Hitachi Energy. All rights reserved.

Applications Profiling

How to start the process for planning to implement a hybrid infra....

Application vs Requirements

HITACHI Inspire the Next

Number of Devices

How to build a hybrid Mission Critical Infrastructure

Campus, Regional Context

Campus, Regional Context

Managed by Supros Network Management and backward compatible with older generations TropOS

OHITACHI Energy

The TRO600 Series

TRO610

A small form factor, ideal for single client connectivity. Cost optimized for large scale industrial IoT deployments, focusing on low power cellular technologies (NB-IoT/ Cat-M).

Industrially certified with mission critical grade cyber security.

Suitable for Massive IIoT 5G.

Variants:

- Cellular (NB-IoT, Cat-M, 4G)
- Bluetooth (optional local interface)

Available today

TRO620

DIN rail mounted for indoor or cabinet installations. A powerful, multi-interface device, ideal for multi-client, multi-application deployments.

Configurable WAN/ backhaul fallback, for "always on" connectivity. Light edge computing capability for application processing. Industrially certified with mission critical grade cyber security.

Variants:

- Cellular (2G, 3G, 4G, 5G future)
- Broadband mesh / Wi-Fi Hybrid

Available today

TRO670

Pole mounted for harsh outdoor environments. Larger enclosure, to allow the integration of partner radios and a variety of power options, including AC/DC input and optional battery back-up.

Configurable WAN/ backhaul fallback, for "always on" connectivity. Light edge computing capability for application processing. Industrially certified with mission critical grade cyber security.

Variants:

- Cellular (2G, 3G, 4G, 5G future)
- Broadband mesh / Wi-Fi Hybrid

Available Q2 2023

Single Carrier Grade NMS

Supros

Optimization Contraction Contractic Contractic

Comprehensive management with powerful visualization tools

- One application to manage the wireless comms network
- Future support for Eth Switch and Fleet management
- Enhanced Security
- Low Touch Provisioning for ease of deployment
- Edge Application Management
- Network-wide visualization tools
- Scalable to >100,000 devices
- North Bound Interface to integration with other management systems

FCAPS:- Fault, Configuration, Administration, Performance, Security

HITACHI | SuprOS

Internal © 2021 Hitachi Energy. All rights reserved.

TRO600 as an Edge Compute Gateway

- Compute environment, memory and storage
 - The number and type of applications will be determined as PoCs and Demos are completed
- Connection to Public Cloud or Private Cloud (On-Premise)
- Podman lightweight container environment
 - o Supports Docker containers
- Applications should not interfere with the core functionalities of the router
- Customers will develop applications
- Integration with Amazon Greengrass or Azure Cloud environments are to be explored further based on customer demand
- Customers can install applications to compute and translate messages to MQTT to send data back to the Cloud

SvK Case

SvK – Back Grounder - MAP

Svenska Kraftnät Back Grounder

Svenska Kraftnät is the Swedish Authority (TSO) that is operated in the form of a state-owned enterprise.

The Swedish national grid for electricity consists of approximately 17,000 km of power lines, about 200 substations and switching stations and 16 connections to other countries.

All the Swedish DSO and private Wind and Solar enterprises have to connect to the TSO SvK. In Sweden there are **approximately 170** DSOs, which are connected to SvK transmission network.

The Business Case for SvK Smart Grid

The trend for power generation becomes more decentralized. SvK want to take full control with the quality and load balancing of the production of decentralized power generation

The load balancing use case is an EU trend

TRO600 - 5G Use Cases

5G at a glance

5G is not just another technology	5G is the mother of all wireless technologies!High bitrate (CCTV, video process optimization)Ultra low latency (teleprotection & control for distribution)	
	 Massive IIoT (sensors, smart meters, asset monitoring) Mobility (drance, increasion reports, mobile worker) 	Cat 19 Cat 12 Cat 12
	• Mobility (drones, inspection robots, mobile worker)	High bandwidth High cost High power Low latency
5G has 2 legs	 Broadband / ultra-low latency Industrial device scale: 1000s or 10,000s Massive IoT Industrial device scale: 100,000s or 1,000,000s 	Low bandwidth Low cost Low power Higher latency
Why now?	 With the push toward digitalization and carbon neutrality, 	Evolution to high speed cellular Evolution to cellular LPWA
	industrial customers are looking for operational efficiency	
	Data is power, real-time data is cost saving	
	 They need to make a technology leap, period! 	
	 5G is the most robust technology on the market, with the longest horizon into 6G/7G – investment protection 	

Internal © 2021 Hitachi Energy. All rights reserved.

	Bandwidth			Latency			Mobility			Volume			Density			Reliability			Solution Considerations					Technology Fit						
	Very Low	Low	Medium	High	Medium	Low	Very Low	None/ Fixed	Nomadic	Mobile	Low	Medium	High	Very High	Low	Medium	High	Very High	Medium	High	Very High	RF Coverage	RF Capacity	QoS	Features	Ports	NB-IoT/CatM1	4G/ 5G	Broadband Mesh/ Wi-Fi	Wired Backhaul
Remote Edge Node Connectivity		UL			х			Х					Х				Х			Х			0			0		0	0	
Real Time Asset Data		UL			Х				Х		Х				Х					Х				0			0			
Industrial IoT	UL					Х		Х	Х					Х				Х			Х		0			0	0			
Unmanned Autonomous Vehicles				UL		Х				Х	Х				Х						Х	0	0					O*	0	0
Inspection Robots & Drones				UL			Х			Х	Х				Х						Х	0	0	0				0		
Video HSE violations				UL	Х			Х	Х		Х				Х				Х				0					0	0	
Video Process Safety Monitoring				UL		Х		Х	Х		Х				Х						Х		0					0	0	0
Video Process Optimisation				UL		Х		Х	Х		Х				Х						Х		0					0	0	0
Smart Mobile Worker			UL		Х					Х		Х			Х				Х			0						0	0	
Emergency Personnel Mustering	UL				Х					Х			Х			Х				Х		0			0		0			
Fixed Wireless Access				DL	Х			Х	Х		Х				Х				Х				0					0	0	0
Mobile Broadband (incld VoIP)			DL		Х					Х	Х				Х				Х			0	0	0				0	0	
Emergency Call		Х			Х					Х		Х			Х					Х		0		0			0	0	0	
Group Call		Х			Х					Х		Х			Х					Х		0			0		0	0	0	
Teleprotection for Distribution		Х					Х	Х				Х				Х					Х	0		0				0		0

Hitachi Energy

HITACHI

Inspire the Next

3 ways to connect to a 5G network

OHITACHI Energy

Internal © 2021 Hitachi Energy. All rights reserved.

OHITACHI Energy

Mission Critical Cybersecurity

Procedures/processes IEC 62443

Cyber Security Product Features

IPSec & VPN

Data Encryption

User Authentication

Client Authentication

Role-based Network Management

Hashed Firmware

Restricted Dataflow

Certificate Management

TPM v2

QRNF (future)

Secure integration with SuprOS

Industrial Cybersecurity **Standards Compliance**

IEC 61850, IEC 62351, IEEE 1711.2, **IEEE 1686, NISTIR 7628/IEEE** C37.240

Regional Guidelines and Regulations

IT SIG 2.0, EU NIS2, NERC CIP

@Hitachi Energy

IPsec & VPN

32 IPSec tunnels IKEv1 & IKEv2 over IPv4 and IPv6 AES 256, SHA 256, DH Group 14

Data Encryption

Compliant with 3GPP AES level AES 256 for mesh WPA2 (128, 256 bit, AES) for Wi-Fi client traffic

User Authentication

RADIUS or local authentication for users

Client Authentication

RADIUS based machine client authentication

Role based network management

Access restricted based on role – root, read/write, read only

Hashed Firmware

All firmware is protected against tampering - hashed at Hitachi factory and only decodable at upgrade by TRO devices

Restricted Dataflow

Stateful & zone-based firewall MAC ACLs, Allow and Deny list

Certificate Management

Hitachi and customer certificate renewal and management using X.509 PKI certificates

Trusted Platform Module v2 (future)

For storing asymmetric private keys

Encrypted Configuration

NMS control over HTTPS Configuration exports are encrypted and only decryptable when restored on a TRO device

Industry Standards

IEC62443-4-1 & IEC62443-4-2 NERC CIP IEEE 1686

QRNG (future)

Quantum safe random number generator

IEC 62443

Figure 1 – Parts of the IEC 62443 series

In Summery

	Enterprise Grade	Industrial Grade	Hitachi Energy Value					
Ideal Deployment Scenarios	Indoor Office/ Home Stadium Corporate Campus	H/M/V Voltage Substation Harsh environment Chemical/ Explosive Exposure (ATEX)	Hitachi Energy equipment is intrinsically designed for harsh environments without the need for enclosures					
Enclosure & Hardware	Plastic/ Aluminum	Metal with Galvanic Isolation	Hitachi Energy industrial hardware is not repurposed					
Environmental Rating	IP10 – IP20 -20 to+ 50 Deg C	IP30 – IP67 -25 to +75 Deg C Salt Spray Resistant	commercial equipment, it is designed to serve in harsh environments, protecting the					
Electrical Immunity	Little to None	IEC 61850-3/ IEEE 1613 MV to HV	decades.					
Typical Power Consumption	10 - 30W	3 – 10W	Low power consumption results in less wear & tear and superior longevity of the hardware					
Standard Warranty	1-2 years	5 years	Investment protection for long					
Typical Lifecycle	5 years	15+ years	litecycles					

Note: Enterprise Grade routers have historically been positioned in hazardous environments through the use of enclosures and various protection accessories. This introduces an increase in cost, as well as integration risk compared to an industrial device which was designed specifically for these environments and applications.

Internal © 2021 Hitachi Energy. All rights reserved.

OHITACHI Energy

HITACHI Inspire the Next

POWERING GOOD FOR SUSTAINABLE ENERGY

TRO600 Back Up Slides

TRO600 and SuprOS Series

Internal © 2021 Hitachi Energy. All rights reserved.

38

The TRO600 Series

TRO610

A small form factor, ideal for single client connectivity. Cost optimized for large scale industrial IoT deployments, focusing on low power cellular technologies (NB-IoT/ Cat-M).

Industrially certified with mission critical grade cyber security.

Suitable for Massive IIoT 5G.

Variants:

- Cellular (NB-IoT, Cat-M, 4G)
- Bluetooth (optional local interface)

Available today

TRO620

DIN rail mounted for indoor or cabinet installations. A powerful, multi-interface device, ideal for multi-client, multi-application deployments.

Configurable WAN/ backhaul fallback, for "always on" connectivity. Light edge computing capability for application processing. Industrially certified with mission critical grade cyber security.

Variants:

- Cellular (2G, 3G, 4G, 5G future)
- Broadband mesh / Wi-Fi Hybrid

Available today

TRO670

Pole mounted for harsh outdoor environments. Larger enclosure, to allow the integration of partner radios and a variety of power options, including AC/DC input and optional battery back-up.

Configurable WAN/ backhaul fallback, for "always on" connectivity. Light edge computing capability for application processing. Industrially certified with mission critical grade cyber security.

Variants:

- Cellular (2G, 3G, 4G, 5G future)
- Broadband mesh / Wi-Fi Hybrid

Available Q2 2023

Single Carrier Grade NMS

Supros

Optimization Contraction Contractic Contractic

Launching TRO610 – The Second TRO600 Family Member

Tropos TRO620

HITACHI Inspire the Next

- Specially built for utility, oil and gas, sea port, mining and industrial applications
- Industrial applications that monitor and control field automation endpoints such as intelligent electrical devices, industrial process controllers, and SCADA devices
- Contemporary applications like video surveillance and other streaming applications
- Ethernet and Serial interfaces support a wide variety of current and legacy protocols

Environmental specifications

- Operating temperature range: -40°C to 75°C / -40°F to 167°F
- Storage temperature range: -40°C to 85°C / -40°F to 185°F
- IP67 rated enclosure: UL579/IEC 60529
- Wind survivability: >200 mph
- Wind loading (200 mph): <330 Newtons
- ASTM B117 salt, fog, rust resistance compliant
- Shock & vibration: ETSI 300-19-2-4 spec T4.1E class 4M3
- Transportation: ISTA 2A
- ATEX zone 2 certified

Power

- DC Models: 24-48 Volts DC
- AC Models: 100-240 Volts AC
- Optional Integrated Battery Backup (60 or 120 Wh)

Front view no cover

Bottom view **Hitachi Energy**

Managed by Supros Network Management and backward compatible with older generations TropOS

Comprehensive management with powerful visualization tools

- One application to manage the wireless comms network
- Future support for Eth Switch and Fleet management
- Enhanced Security
- Low Touch Provisioning for ease of deployment
- Edge Application Management
- Network-wide visualization tools
- Scalable to >100,000 devices
- North Bound Interface to integration with other management systems

FCAPS:- Fault, Configuration, Administration, Performance, Security

HITACHI | SuprOS

Internal © 2021 Hitachi Energy. All rights reserved.

TRO600 as an Edge Compute Gateway

- Compute environment, memory and storage
 - The number and type of applications will be determined as PoCs and Demos are completed
- Connection to Public Cloud or Private Cloud (On-Premise)
- Podman lightweight container environment
 - o Supports Docker containers
- Applications should not interfere with the core functionalities of the router
- Customers will develop applications
- Integration with Amazon Greengrass or Azure Cloud environments are to be explored further based on customer demand
- Customers can install applications to compute and translate messages to MQTT to send data back to the Cloud

HITACHI Inspire the Next

POWERING GOOD FOR SUSTAINABLE ENERGY